3D Printing

3D printing technologies offer unique, affordable, and fast prototyping solutions. TEAM offers 4 distinct 3D printing technologies, each of which presents its own set of advantages and disadvantages. Please use the descriptions, combined with the printer-comparison guide found below when selecting a service. Feel free to contact us for further clarification.

Basic Comparison:

Printing Technology Material Strength Accuracy Geometric Flexibility Relative Cost
FDM - Fused Deposition Modeling Good Fair Fair $
Reinforced FDM Excellent Very Good Good $$$-$$$$$*
SLA - Stereolithography Good to Excellent Very Good to Excellent Good $$-$$$*
Polyjet Poor Excellent Excellent $$$-$$$$*
         
* Dependent on material selection

Click here to see a complete comparison summary.

 

 

Raise 3D Pro2V Plus

FDM – Fused Deposition Modeling

 

FDM 3D Printing is a technique whereby a layered object is deposited as a continuous, or semi-continuous thermoplastic filament extruded from a hot-nozzle.  In other words, the deposition process this machine uses is similar to that of a hot-glue-gun.  This is the most common 3D printing technique on the market, as it’s generally inexpensive, and is capable of making durable parts.  However, its ability to achieve complex geometry is somewhat limited in comparison to other technologies, and its printing resolution is comparatively very course (with layer thicknesses generally between 100, and 300 microns).

 

Reinforced FDM – Fiber-reinforced Fused

Reinforced FDM 3D Printing is an extension of standard FDM printing.  The primary differences being:

  1. The primary build material is a composite consisting of chopped carbon embedded in the bulk plastic (Nylon), to give us “Onyx” in place of PLA, ABS, etc.
  2. (Optional) continuous bands of fiber filament (typically carbon fiber) embedded in the above “bulk” printer material, applied in the Z-plane.

It’s printing resolution is generally also somewhat better than standard FDM;  Thinner layers,  and higher-precision machine mechanics generally yield a +/- 100 micron accuracy.

Onyx Pro (Gen 2 - No WiFi) | Markforged

 

High Resolution SLA and SLS 3D Printers for ProfessionalsFormlabs Form 3L Basic Package | Dynamism

 

SLA – Stereolithography

SLA 3D Printing is a technique whereby an object is etched into UV-curing liquid resin via laser in a series of stacked layers.   This printing technology is best where strength and accuracy are both important characteristics, or where geometry may be too complex to achieve via FDM printing.  In general, this printing technology may not be appropriate where wall thicknesses exceed ~10mm.

 

 

Polyjet – Jetted Photopolymer

Polyjet printing is a 3d deposition process that shares many similarities to traditional, 2D inkjet printing.  However, instead of jetting droplets of ink onto paper, Polyjet printing deposits a UV curing liquid resin onto a build platform which is solidified immediately following the jetting process.  This process is looped in successive layers.  Upon completion of the print, a gel-like temporary support structure is removed via high-pressure water.

As the layer size is typically around 22 microns, this printing technology is capable of extreme precision in comparison to FDM printing, and is slightly better than SLA printing.  However, the cost for this level of precision is that materials are significantly weaker, and often more expensive.

Coupling this level of precision with a dedicated support structure permits the development of “printed assemblies,” whereby multiple pieces are held in suspension from one another with support structure, printed as one part, and separated after cleaning to reveal a functional part. 

Objet260 Connex | 3D Printers

 

 

How to Leverage These Technologies

The input to each of these machines would be a mm-scale STL file, exported from your CAD (Computer Aided Design) package of choice.  Submit these files (with your original parametric model files, if possible) in a service request for review.

 

External Resources

High Resolution SLA and SLS 3D Printers for Professionals (formlabs.com)

Industrial 3D Printing & Additive Manufacturing | Stratasys - Stratasys

Industrial Additive Manufacturing Platform | Markforged